Blame view

mspark/SC.py 11.3 KB
3b4e250d   Chunk   staged.
1
# -*- coding: utf-8 -*-
a9c10957   Chunk   hbase-svm & spark...
2
3
__author__ = 'chunk'

ca73c96f   Chunk   Transformed into ...
4
from ..common import *
f69baeb6   Chunk   spark streaming ...
5
6
from .dependencies import *
from . import *
3b4e250d   Chunk   staged.
7
8
9
10
11
# from ..mdata import MSR, CV, ILSVRC, ILSVRC_S

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5
1c2a3fa0   Chunk   staged.
12
from ..mfeat import IntraBlockDiff
e3e7e73a   Chunk   spider standalone...
13

ca73c96f   Chunk   Transformed into ...
14
import sys
a9c10957   Chunk   hbase-svm & spark...
15
from pyspark import RDD
02528074   Chunk   staged.
16
from pyspark import SparkConf, SparkContext
a9c10957   Chunk   hbase-svm & spark...
17
18
19
20
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from numpy import array
import json
5ec38adb   Chunk   spark-local of da...
21
22
import pickle
import tempfile
3b4e250d   Chunk   staged.
23
24
25

import numpy as np
from scipy import stats
3b4e250d   Chunk   staged.
26
27
28
from hashlib import md5

np.random.seed(sum(map(ord, "whoami")))
1c2a3fa0   Chunk   staged.
29
package_dir = os.path.dirname(os.path.abspath(__file__))
3b4e250d   Chunk   staged.
30

e3e7e73a   Chunk   spider standalone...
31

3b4e250d   Chunk   staged.
32
def rddparse_data_CV(raw_row):
e3ec1f74   Chunk   staged.
33
    """
3b4e250d   Chunk   staged.
34
    input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
5ec38adb   Chunk   spark-local of da...
35
36
37
38
39
40
41
42
43
44
    return: ([0.056273,...],1)
    """
    data = raw_row[1].split('--%--')
    feat = json.loads(data[0].split(':')[-1])
    tag = 1 if data[-1].split(':')[-1] == 'True' else 0
    return (feat, tag)


def rddparse_data_ILS(raw_row):
    """
3b4e250d   Chunk   staged.
45
46
47
48
49
50
51
    input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
    return: ([0.056273,...],1)

    In fact we can also use mapValues.
    """
    key = raw_row[0]
    # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
3b4e250d   Chunk   staged.
52
    # with open('/tmp/hhhh','wb') as f:
1c2a3fa0   Chunk   staged.
53
54
55
56
    # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
    data = items[0].split('cf_pic:data:')[-1]
    return (key, data)
3b4e250d   Chunk   staged.
57
58
59
60
61


def rddparse_all_ILS(raw_row):
    """
    Deprecated
8bddd8b3   Chunk   You guess what? T...
62
63
64
    """
    key = raw_row[0]
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
3b4e250d   Chunk   staged.
65

1c2a3fa0   Chunk   staged.
66
    # @TODO
8bddd8b3   Chunk   You guess what? T...
67
68
69
    # N.B "ValueError: No JSON object could be decoded" Because the spark-hbase IO is based on strings.
    # And the order of items is not as expected. See ../res/row-sample.txt or check in hbase shell for that.

02528074   Chunk   staged.
70
71
    data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]]

ece71a0d   Chunk   Streaming! encodi...
72
73
    return (key, data)

8bddd8b3   Chunk   You guess what? T...
74

3b4e250d   Chunk   staged.
75
76
77
def rddparse_dataset_ILS(raw_row):
    if raw_row[0] == '04650c488a2b163ca8a1f52da6022f03.jpg':
        print raw_row
02528074   Chunk   staged.
78
79
80
81
82
83
84
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
    # tag = int(items[-2].split('cf_tag:' + tagtype)[-1])
    # feat = [item for sublist in json.loads(items[-1].split('cf_feat:' + feattype)[-1]) for subsublist in sublist for item in subsublist]
    tag = int(items[-1].split(':')[-1])
    feat = [item for sublist in json.loads(items[0].split(':')[-1]) for subsublist in sublist for item in subsublist]

    return (tag, feat)
ece71a0d   Chunk   Streaming! encodi...
85
86


02528074   Chunk   staged.
87
88
89
90
def rddinfo_ILS(img, info_rate=None, tag_chosen=None, tag_class=None):
    """
    Tempfile is our friend. (?)
    """
1c2a3fa0   Chunk   staged.
91
    info_rate = info_rate if info_rate != None else 0.0
3b4e250d   Chunk   staged.
92
93
94
95
96
97
98
    tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
    tag_class = tag_class if tag_class != None else 0
    try:
        tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf.write(img)
        tmpf.seek(0)
        im = Jpeg(tmpf.name, key=sample_key)
489c5608   Chunk   debugging...
99
        info = [
3b4e250d   Chunk   staged.
100
101
102
            im.image_width,
            im.image_height,
            im.image_width * im.image_height,
1c2a3fa0   Chunk   staged.
103
104
105
106
107
108
109
110
111
112
            im.getCapacity(),
            im.getQuality(),
            info_rate,
            tag_chosen,
            tag_class
        ]
        return info
    except Exception as e:
        print e
        raise
3b4e250d   Chunk   staged.
113
114
115
    finally:
        tmpf.close()

1c2a3fa0   Chunk   staged.
116

3b4e250d   Chunk   staged.
117
118
119
120
def rddembed_ILS(row, rate=None):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
d47ae6ce   Chunk   staged.
121
    return:
3b4e250d   Chunk   staged.
122
123
124
125
126
127
128
        newrow = ('row2',[34,5400,'embeded'])
    """
    items = row[1]
    capacity, chosen = int(items[4]), int(items[7])
    if chosen == 0:
        return None
    try:
d47ae6ce   Chunk   staged.
129
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
3b4e250d   Chunk   staged.
130
131
132
133
134
135
136
137
        tmpf_src.write(items[0])
        tmpf_src.seek(0)
        tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

        steger = F5.F5(sample_key, 1)

        if rate == None:
            embed_rate = steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
1c2a3fa0   Chunk   staged.
138
139
                                               tmpf_dst.name)
        else:
3b4e250d   Chunk   staged.
140
            assert (rate >= 0 and rate < 1)
ece71a0d   Chunk   Streaming! encodi...
141
142
            # print capacity
            hidden = np.random.bytes(int(int(capacity) * rate) / 8)
3b4e250d   Chunk   staged.
143
144
145
146
147
148
149
150
151
152
153
            embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

        tmpf_dst.seek(0)
        raw = tmpf_dst.read()
        index = md5(raw).hexdigest()

        return (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))

    except Exception as e:
        print e
        raise
1c2a3fa0   Chunk   staged.
154
    finally:
3b4e250d   Chunk   staged.
155
156
157
158
159
160
161
162
        tmpf_src.close()
        tmpf_dst.close()


def _get_feat(image, feattype='ibd', **kwargs):
    if feattype == 'ibd':
        feater = IntraBlockDiff.FeatIntraBlockDiff()
    else:
d642d837   Chunk   staged.
163
        raise Exception("Unknown feature type!")
489c5608   Chunk   debugging...
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    desc = feater.feat(image)

    return desc


def rddfeat_ILS(items, feattype='ibd', **kwargs):
    try:
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf_src.write(items[0])
        tmpf_src.seek(0)

        desc = json.dumps(_get_feat(tmpf_src.name, feattype=feattype).tolist())
        # print 'desccccccccccccccccccc',desc
        return items + [desc]

    except Exception as e:
        print e
51708346   Chunk   final experiments...
182
        raise
489c5608   Chunk   debugging...
183
184
    finally:
        tmpf_src.close()
ece71a0d   Chunk   Streaming! encodi...
185
186


489c5608   Chunk   debugging...
187
188
189
190
191
192
193
194
195
196
197
def format_out(row, cols, withdata=False):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
            cols = [['cf_info', 'id'], ['cf_info', 'size'], ['cf_tag', 'desc']]
    return:
        [('row1',['row1', 'cf_info', 'id', '1']),('row1',['row1', 'cf_info', 'size', '3400']),('row1',['row1', 'cf_tag', 'desc', 'hello'])]
    """
    puts = []
    key = row[0]
    # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
d642d837   Chunk   staged.
198
    # print row
489c5608   Chunk   debugging...
199
200
201
202
203
204
205
206
    if not withdata:
        for data, col in zip(row[1][1:], cols[1:]):
            puts.append((key, [key] + col + [str(data)]))
    else:
        for data, col in zip(row[1], cols):
            puts.append((key, [key] + col + [str(data)]))
    return puts

3b4e250d   Chunk   staged.
207

1c2a3fa0   Chunk   staged.
208
209
210
211
212
213
214
215
216
217
218
class Sparker(object):
    def __init__(self, host='HPC-server', appname='NewPySparkApp', **kwargs):
        load_env()
        self.host = host
        self.appname = appname
        self.master = kwargs.get('master', 'spark://%s:7077' % self.host)
        self.conf = SparkConf()
        self.conf.setSparkHome(self.host) \
            .setMaster(self.master) \
            .setAppName(self.appname)

8bddd8b3   Chunk   You guess what? T...
219
        # self.conf.set("spark.akka.frameSize","10685760")
1c2a3fa0   Chunk   staged.
220
221
222
223
224
225
        # self.conf.set("spark.driver.extraClassPath", extraClassPath) \
        # .set("spark.executor.extraClassPath", extraClassPath) \
        # .set("SPARK_CLASSPATH", extraClassPath) \
        # .set("spark.driver.memory", "1G") \
        # .set("spark.yarn.jar", sparkJar)

8bddd8b3   Chunk   You guess what? T...
226
227
        self.sc = SparkContext(conf=self.conf)

1c2a3fa0   Chunk   staged.
228
229
230
231
232
233
234
        self.model = None


    def read_hbase(self, table_name, func=None, collect=False):
        """
        ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data

e3ec1f74   Chunk   staged.
235
236
        Filter format:
            columns=['cf1:col1', 'cf1:col2']
4f36b116   Chunk   staged.
237
238
239
            or
            columns=['cf1']

e3ec1f74   Chunk   staged.
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        """

        hconf = {"hbase.zookeeper.quorum": self.host,
                 "hbase.mapreduce.inputtable": table_name,
                 }

        hbase_rdd = self.sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
                                            keyClass=hparams["readKeyClass"],
                                            valueClass=hparams["readValueClass"],
                                            keyConverter=hparams["readKeyConverter"],
                                            valueConverter=hparams["readValueConverter"],
                                            conf=hconf)

        parser = func if func != None else rddparse_data_CV
        hbase_rdd = hbase_rdd.map(lambda x: parser(x))

        if collect:
e3e7e73a   Chunk   spider standalone...
257
            return hbase_rdd.collect()
1c2a3fa0   Chunk   staged.
258
        else:
d47ae6ce   Chunk   staged.
259
            return hbase_rdd
0fbc087e   Chunk   staged.
260
261
262
263
264

    def write_hbase(self, table_name, data, fromrdd=False, columns=None, withdata=False):
        """
        Data Format: (Deprecated)
            e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]
1c2a3fa0   Chunk   staged.
265

0fbc087e   Chunk   staged.
266
267
268
        Data(from dictionary):
            e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
                cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
d47ae6ce   Chunk   staged.
269
270
271
272
273
274
275
276
        Data(from Rdd):
            e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
                cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
        """
        hconf = {"hbase.zookeeper.quorum": self.host,
                 "hbase.mapreduce.inputtable": table_name,
                 "hbase.mapred.outputtable": table_name,
                 "mapreduce.outputformat.class": hparams["outputFormatClass"],
0fbc087e   Chunk   staged.
277
278
                 "mapreduce.job.output.key.class": hparams["writeKeyClass"],
                 "mapreduce.job.output.value.class": hparams["writeValueClass"],
26616791   Chunk   RDD-hbase bug fix...
279
                 }
54e2adda   Chunk   staged.
280
281
        cols = [col.split(':') for col in columns]
        if not fromrdd:
26616791   Chunk   RDD-hbase bug fix...
282
            rdd_data = self.sc.parallelize(data)
e3ec1f74   Chunk   staged.
283
        else:
54e2adda   Chunk   staged.
284
285
286
287
            rdd_data = data

        rdd_data.flatMap(lambda x: format_out(x, cols, withdata=withdata)).saveAsNewAPIHadoopDataset(
            conf=hconf,
4f36b116   Chunk   staged.
288
            keyConverter=hparams["writeKeyConverter"],
54e2adda   Chunk   staged.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            valueConverter=hparams["writeValueConverter"])


    def train_svm(self, X, Y=None):

        if Y == None:
            # From rdd_labeled
            assert isinstance(X, RDD)
            svm = SVMWithSGD.train(X)
        else:
            # data = []
            # for feat, tag in zip(X, Y):
            # data.append(LabeledPoint(tag, feat))
            # svm = SVMWithSGD.train(self.sc.parallelize(data))
            hdd_data = self.sc.parallelize(zip(X, Y), 20).map(lambda x: LabeledPoint(x[1], x[0]))
            svm = SVMWithSGD.train(hdd_data)
        self.model = svm
        # with open('res/svm_spark.model', 'wb') as modelfile:
        # model = pickle.dump(svm, modelfile)

        return self.model

    def predict_svm(self, x, collect=False, model=None):
        """
        From pyspark.mlib.classification.py:

            >> svm.predict([1.0])
            1
            >> svm.predict(sc.parallelize([[1.0]])).collect()
            [1]
            >> svm.clearThreshold()
            >> svm.predict(array([1.0]))
            1.25...
        """
        if model is None:
            if self.model != None:
                model = self.model
            else:
                # with open('res/svm_spark.model', 'rb') as modelfile:
                # model = pickle.load(modelfile)
                raise Exception("No model available!")

        res = model.predict(x)
        if collect:
            return res.collect()
        else:
            return res

    def test_svm(self, X, Y=None, model=None):
        if model is None:
            if self.model != None:
                model = self.model
            else:
                # with open('res/svm_spark.model', 'rb') as modelfile:
                # model = pickle.load(modelfile)
                raise Exception("No model available!")

        if Y == None:
            assert isinstance(X, RDD)
            pass
        else:
            result_Y = np.array(self.predict_svm(X, collect=True))
0fbc087e   Chunk   staged.
351
            return np.mean(Y == result_Y)
a9c10957   Chunk   hbase-svm & spark...

018ebf56   Chunk   Spark Streaming T...

a9c10957   Chunk   hbase-svm & spark...

5ec38adb   Chunk   spark-local of da...

a9c10957   Chunk   hbase-svm & spark...

018ebf56   Chunk   Spark Streaming T...

5ec38adb   Chunk   spark-local of da...

a9c10957   Chunk   hbase-svm & spark...

f4fb4381   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

3b4e250d   Chunk   staged.

489c5608   Chunk   debugging...

54e2adda   Chunk   staged.

d642d837   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

a9c10957   Chunk   hbase-svm & spark...

3b4e250d   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0a55c5f4   Chunk   staged.

26616791   Chunk   RDD-hbase bug fix...

ea1eb31a   Chunk   spark is privileg...

d47ae6ce   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

0fbc087e   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

0fbc087e   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

489c5608   Chunk   debugging...

ece71a0d   Chunk   Streaming! encodi...

e3ec1f74   Chunk   staged.

54e2adda   Chunk   staged.

d642d837   Chunk   staged.

0fbc087e   Chunk   staged.

3b4e250d   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

ece71a0d   Chunk   Streaming! encodi...

a9c10957   Chunk   hbase-svm & spark...

02528074   Chunk   staged.

10b4f63f   Chunk   staged. Before Pa...

02528074   Chunk   staged.

f4fb4381   Chunk   staged.

02528074   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

10b4f63f   Chunk   staged. Before Pa...

5ec38adb   Chunk   spark-local of da...

02528074   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

02528074   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

10b4f63f   Chunk   staged. Before Pa...

a9c10957   Chunk   hbase-svm & spark...

02528074   Chunk   staged.

f20e20ce   Chunk   staged.

02528074   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

02528074   Chunk   staged.